From Euclidean to Minkowski space with the Cauchy-Riemann equations

نویسندگان

  • Mercedes Gimeno-Segovia
  • Felipe J. Llanes-Estrada
چکیده

We present an elementary method to obtain Green’s functions in non-perturbative quantum field theory in Minkowski space from calculated Green’s functions in Euclidean space. Since in non-perturbative field theory the analytical structure of amplitudes is many times unknown, especially in the presence of confined fields, dispersive representations suffer from systematic uncertainties. Therefore we suggest to use the Cauchy-Riemann equations, that perform the analytical continuation without assuming global information on the function in the entire complex plane, only in the region through which the equations are solved. We use as example the quark propagator in Landau gauge Quantum Chromodynamics, that is known from lattice and Dyson-Schwinger studies in Euclidean space. The drawback of the method is the instability of the Cauchy-Riemann equations to high-frequency noise, that makes difficult to achieve good accuracy. We also point out a few curiosities related to the Wick rotation. PACS. 11.10.St – 11.55.Bq

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nvestigation of a Boundary Layer Problem for Perturbed Cauchy-Riemann Equation with Non-local Boundary Condition

Boundary layer problems (Singular perturbation problems) more have been applied for ordinary differential equations. While this theory for partial differential equations have many applications in several fields of physics and engineering. Because of complexity of limit and boundary behavior of the solutions of partial differential equations these problems considered less than ordinary case. In ...

متن کامل

$L_k$-biharmonic spacelike hypersurfaces in Minkowski $4$-space $mathbb{E}_1^4$

Biharmonic surfaces in Euclidean space $mathbb{E}^3$ are firstly studied from a differential geometric point of view by Bang-Yen Chen, who showed that the only biharmonic surfaces are minimal ones. A surface $x : M^2rightarrowmathbb{E}^{3}$ is called biharmonic if $Delta^2x=0$, where $Delta$ is the Laplace operator of $M^2$. We study the $L_k$-biharmonic spacelike hypersurfaces in the $4$-dimen...

متن کامل

$L_{p;r} $ spaces: Cauchy Singular Integral, Hardy Classes and Riemann-Hilbert Problem in this Framework

In the present work the space  $L_{p;r} $ which is continuously embedded into $L_{p} $  is introduced. The corresponding Hardy spaces of analytic functions are defined as well. Some properties of the functions from these spaces are studied. The analogs of some results in the classical theory of Hardy spaces are proved for the new spaces. It is shown that the Cauchy singular integral operator is...

متن کامل

The Asymptotic Structure of Algebraically Special Space – times

It is shown that the only vacuum algebraically special space-time that is asymptotically simple is Minkowski space. The structure of null infinity for algebraically special space-times satisfying a subset of the vacuum equations is shown to be particularly simple in terms of the coordinates used in Kerr's original reduction of the field equations. With the assumption of the existence of a globa...

متن کامل

The Integrating Factor Method in Banach Spaces

The so called integrating factor method, used to find solutions of ordinary differential equations of a certain type, is well known. In this article, we extend it to equations with values in a Banach space. Besides being of interest in itself, this extension will give us the opportunity to touch on a few topics that are not usually found in the relevant literature. Our presentation includes var...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008